
Table of Contents

Lattice Surgery basics

Grow operation

Shrink operation

Split operation

Merge operation

Mid-Circuit Reset

1

Simple LS combinations

logical CNOT

Tutorial: logical GHZ state
preparation

Lattice Surgery basics

Lattice surgery operations revolve around logical qubits and “free” physical qubits
surrounding the logical qubits.

2

Lattice Surgery basics

A logical qubit (of the surface code) refers a collection of physical qubits where
syndrome-measuring circuits “enforce” a set of stabilizers from the surface code,

Such that there is one degree of freedom to define Pauli operators of the logical qubit.

Logical X

Logical Z

3

Lattice Surgery basics

At any particular time step, some physical qubits are part of a logical qubits and some are
not. By altering these sets based on a set of well-defined rules, we can build a sequence of
such time-steps that alter the shapes, orientation, and size of these logical qubits.

T = t T = t+1

4

Lattice Surgery basics

Within Entwine, the boundary type is
helpfully colored on the data qubits
to help the user identify at a glance.

The literature is often confusing as to
how the boundaries types are defined.
Regardless, this image indicates our
definition of boundary types.

X-boundary

Z-boundary

5

Grow

Prior to Grow (extending in the X-logical direction),
data qubits to be included into the new patch are set to +X state.

The new logical X operator (circled) is defined in terms of the old logical X operator. 6

Grow

Definition of Logical Z operator is unchanged.

7

Grow

Likewise, prior to Grow (extending in the Z-logical direction),
data qubits to be included into the new patch are set to +Z state.
Logical X is unchanged, while logical Z is similarly changed as in the previous example.

8

Shrink

Shrink is basically the reverse of Grow.
When reducing the size of the logical qubit along the direction of logical X, data qubits that
are no longer part of the new logical qubit are measured in the X-basis.

9

Shrink

The new logical X operator is related to the old logical X operator by the product of the
measurement values of the data qubits that were part of the old logical X but no longer part
of the new one.

10

Shrink

In Entwine, the process of defining
the Shrink operation is similar
to the Grow operation.

11

Split (on the X boundary)

A subset of data qubits that were part of the old logical qubit is measured out in the X basis,
in such a way as to result in 2 logical qubits after.

12

Split (on the X boundary)

The old logical X operator is related to the new logical XX operator, with the product of one the
data qubits that was measured. The eigenvalue of the the new logical XX operator is
influenced by the measured value of the data qubit.

13

Split (on the X boundary)

The old logical Z operator is redefined as logical Z operator of one the logical qubits.
The logical Z operator of the other logical qubit is defined as the product of the logical Z
operator of the first logical qubit and the measured values of the Z stabilizers (marked in
figure). 14

Split (on the X boundary)

Take note that regardless of the logical state encoded by the old logical qubit, the logical state
of the new logical qubits post-Split will be stabilized by logical ZZ, given by the product of the
marked Z-stabilizers.

15

Split (on the X boundary)

Because the eigenvalue of the logical ZZ operator is known (determined), the Split operation is
also a part of the logical Measurement operation of Pauli ZZ.

16

Split (on the X boundary)

Simply select a set of data qubits in Entwine, to create the split one logical qubit into two.

17

Merge (on the X boundary)

The Merge on the X boundary lines up the 2 separate logical X operators of their respective
logical qubits, to create a single new logical X operator.

18

Merge (on the X boundary)

Just like the previous Split operation, the new logical qubit post-Merge is stabilized by the
product of the marked Z-stabilizers, equivalent to the logical ZZ operator of the old logical
qubits.

19

Merge (on the X boundary)

Just like the previous Split operation, the new logical qubit post-Merge is stabilized by the
product of the marked Z-stabilizers, equivalent to the logical ZZ operator of the old logical
qubits.

20

Merge (on the X boundary)

Selecting a set of data qubits in Entwine that includes boundaries of 2 adjacent patches
creates the Merge operation.

21

Mid-Circuit Reset
In Entwine, it is possible to re-initialize a
particular logical qubit after a destructive
logical measurement is carried out.

Simply drag-and-select the data qubits that
were part of the original logical qubit to bring it
back.

In terms of lattice surgery sequence, we have
the following:

22

Simple Lattice surgery
Combinations

23

Merge + Split → multi-qubit
pauli measurement

A two-qubit Pauli (non-destructive) measurement takes two
qubits as input and outputs two qubits as well as a classical bit for
the eigenvalue of the Pauli ZZ operator.

MeasureZZ

This can be achieved by the Merge + Split
combination, on the X boundary.

It is not hard to see that a similar Merge + Split
combination, on the Z boundary will yield the
MeasureXX logical operation.

24

Grow + Split

Suppose, somewhere in your logical circuit, you need to bring in
an ancilla qubit in the |+> state, and then do the MeasureZZ
operation afterwards.

MeasureZZ

You might be tempted to just initialize a second logical qubit, and do a Merge + Split
combination. However, you could also simply just Grow the first logical qubit, and then do
a Split.

|+>

25

Merge + Shrink

Likewise, sometimes you may need to measure out one of the
logical qubit straight-away after a MeasureZZ operation. MeasureZZ

You can easily do so with a Merge + Shrink combination.

<+|

26

Grow + Shrink

Logical qubit encoded with surface code has a fixed spatial location. Sometimes you
may need to shift its location.

This can be done with a Grow
and Shrink combination.

Try to pay attention to how the
logical Pauli operators change
during this combination
operation.

27

Logical CNOT

The logical CNOT can be implemented through measurement of Pauli operators, as
depicted in the above figure, up to single-qubit Pauli corrections on both control and
target qubits.

28

MeasureZZ
|+>

c

t
MeasureXX

< 0 |

Logical CNOT

The logical CNOT can thus be
implemented with a sequence of lattice
surgery combinations, Grow+Split →
Merge+Shrink

29

Tutorial example
State preparation for logical GHZ state

30

Logical State Preparation: GHZ

This is the GHZ state:

And we might prepare the state using the following circuit.

|+>

|0>

|0>

To implement this circuit with surface code logical qubits, we need
to consider how to implement the logical operations such as
CNOT with lattice surgery.

31

Logical State Preparation: GHZ |+>

|0>

|0>
One way to do this is to convert the CNOT gates into a sequence of lattice
surgery operations. Notice how we have to include one auxiliary logical qubit.

32

|+>

|+>
|0>
|0>

MeasureZZ

MeasureXX
< 0 | |+>

MeasureZZ
MeasureX

X

MeasureX
X

< 0 |

Logical State Preparation: GHZ |+>

|0>

|0>

The state preparation circuit can be optimized, removing the need for the
auxiliary logical qubit, by cleverly dealing directly with what lattice surgery can
do, instead of thinking of the higher abstraction of CNOTs.

33

Start by preparing the single “long” patch, initialized in the +X logical state.
Then perform the Split operation, breaking up the existing logical X operator
into 3 individual ones.

One can verify that the resulting output state is indeed stabilized by the logical
Pauli operators: {XXX , ZZI, IZZ }

Bonus: logical CZ gate

34

MeasureZZ

|+>

c

t

MeasureXZ
< 0 |

|+>
MeasureZZ

< + |

